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Abstract
We study the equilibrium behaviour of a mixture of monodisperse hard sphere
colloids and polydisperse non-adsorbing polymers at their θ -point, using the
Asakura–Oosawa model treated within the free-volume approximation. Our
focus is the experimentally relevant scenario where the distribution of polymer
chain lengths across the system is fixed. Phase diagrams are calculated using the
moment free energy method, and we show that the mean polymer size ξc at which
gas–liquid phase separation first occurs decreases with increasing polymer
polydispersity δ. Correspondingly, at fixed mean polymer size, polydispersity
favours gas–liquid coexistence but delays the onset of fluid–solid separation.
On the other hand, we find that systems with different δ values but the same
mass-averaged polymer chain length have nearly polydispersity-independent
phase diagrams. We conclude with a comparison to previous calculations for
a semi-grand-canonical scenario, where the polymer chemical potentials are
imposed; there it was found that fluid–solid coexistence was favoured over gas–
liquid in some areas of the phase diagram. Our results show that this somewhat
counter-intuitive result arose because the actual polymer size distribution in the
system is shifted to smaller sizes relative to the polymer reservoir distribution.

1. Introduction

Colloid–polymer mixtures have a wide variety of practical uses: polymers can be added in
low concentrations to colloidal suspensions to modify their properties [1–3], or conversely
colloids can be added to polymer melts as ‘fillers’ [4] or to polymer solutions to produce
gels [5]. In the former case, it is well known that the presence of the polymer can induce
an effective colloid–colloid depletion attraction [6–9]. Unlike the case of atomic systems,
both the strength and range of this interaction can be tuned by varying polymer concentration
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and size. The implications of this for the phase behaviour of the mixture are of fundamental
theoretical interest, and have been the subject of much research.

We focus on the simplest situation in this paper, where the colloids have hard interactions
with each other and with the polymers; this requires in particular that the polymers be non-
adsorbing on the surface of the colloids. We further restrict ourselves to θ -point conditions,
where polymer–polymer interactions can be neglected to a first approximation. When the
polymers are modelled as random walks on a lattice, this scenario is amenable to direct
numerical simulation [10, 11]. However, most work has focused on a further simplification,
proposed by Asakura and Oosawa (AO) [6, 7] and Vrij [8], where the polymers are replaced
by spheres with radius equal to the radius of gyration of the original polymer chains. These
‘polymer spheres’ are then assumed to interpenetrate freely with each other while having a
hard excluded volume interaction with the colloids. This AO model has been studied in great
detail, by thermodynamic perturbation theory [12–14], free-volume theory [15] (see below),
density functional theory [16–18], and Monte Carlo simulations [11, 19, 20]. Note that the
naive choice of setting the radius of the effective polymer sphere equal to the polymer radius
of gyration can be improved upon; we will return to this point in the discussion in section 4.

In addition to the simplifications already discussed, the AO model ignores the fact that there
is, in real colloid–polymer mixtures, invariably an (essentially continuous) spread of polymer
chain lengths. The effects of such polymer size polydispersity on the phase behaviour have been
studied by some researchers. As described in more detail below, however, the experimentally
relevant situation where the full polymer size distribution in the system is conserved during
phase separation remains to be understood. This is the issue which we address in this paper.
Specifically, we study the AO model within the free-volume approximation of [15], for the
case where the colloids are monodisperse, with diameter σc, while the polymer spheres are
polydisperse with density distribution ρp(σp) = ρpnp(σp). Here ρp is the polymer number
density and np(σp) is the normalized polymer diameter distribution. We take the colloid
diameters σc as our unit of length so that the polymer-to-colloid diameter ratio ξ coincides
with the dimensionless polymer diameter, ξ ≡ σp. All densities are made dimensionless by
multiplying by the volume of a colloid particle, and quantities with the dimension of energy
are measured in units of kBT .

For the case of monodisperse polymers, it is well known that the phase behaviour depends
strongly on the polymer-to-colloid diameter ratio (see e.g. [15, 21]). For small polymers only
coexistence between colloidal fluid and solid phases is observed. (The term ‘fluid’ is used
here because there are no distinguishable gas and liquid phases in such a system.) For larger
polymers, on the other hand, with ξ above some threshold value ξc, a region of gas–liquid phase
separation can occur in the phase diagram. When generalizing these considerations to the case
of polydisperse polymers, there is no longer a single polymer size but rather a continuum of
different diameters σp. A choice therefore needs to be made on how to define appropriately the
typical polymer size that determines the phase behaviour. Ideally, one would like this definition
to be such that phase diagrams become nearly independent of polymer polydispersity and can
therefore be inferred from the corresponding monodisperse reference system [22].

A naive definition of the typical polymer size is the mean polymer diameter, ξS =∫
dσp σpnp(σp). This is, in fact, independent of the diameter polydispersity δ, defined as

the standard deviation of np(σp) normalized by its mean. We will see below, however, that this
provides a poor mapping from polydisperse to monodisperse systems, with phase behaviour
at fixed ξS strongly dependent on δ. Following [22], we have therefore investigated other
definitions of typical polymer size. These include the number average ξN, defined by

ξ2
N =

∫
dσp σ 2

p np(σp). (1)
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This is proportional to the average polymer chain length, which scales as σ 2
p . The mass

average ξM is also an average chain length, but with the contribution from each polymer size
weighted by an additional factor of chain length (i.e. mass):

ξ2
M =

∫
dσp σ 4

p np(σp)∫
dσp σ 2

p np(σp)
. (2)

A final definition, the virial average ξB, is derived from the second virial coefficient for the
polymer–colloid interaction. A polymer’s centre of mass is excluded from a sphere of diameter
1 +σp around a colloid of size σc ≡ 1, and ξB is defined as the monodisperse polymer diameter
giving the same average excluded volume, namely

(1 + ξB)3 =
∫

dσp (1 + σp)
3np(σp). (3)

In a monodisperse system all of these definitions are of course equivalent, so that ξS = ξN =
ξM = ξB. In a polydisperse system they respond differently to the shape of the polymer diameter
distribution, and we will try to identify which definition is best suited to characterizing the phase
behaviour in a manner that depends only weakly on the polymer polydispersity. In assessing
this dependence we also have a choice for an appropriate measure of polymer concentration.
This could be e.g. the total polymer number density ρp = ∫

dσp ρp(σp) or the effective volume
fraction of the polymer spheres, φp = ∫

dσp σ 3
p ρp(σp); values of φp of order unity correspond

to the crossover from the dilute to the semi-dilute polymer regime. For a fixed diameter
distribution np(σp), ρp and φp are proportional to each other, but when comparing distributions
with different shapes the difference in the proportionality coefficients matters. We choose
mostly to work with φp, following Warren’s suggestion [22] that this produces phase diagrams
with a relatively weak dependence on the polymer diameter distribution. This will allow us
to assess how far Warren’s insight generalizes beyond the binary mixtures of small polymers
which he considered.

As far as previous work on polymer polydispersity effects in colloid–polymer mixtures
goes, we have already mentioned Warren’s work for mixtures of polymers of two different
sizes [22]. This explicitly accounted for the fact that the overall polymer density distribution
in the system—which in the polydisperse case we will write as ρ

(0)
p (σp)—is imposed by the

experimental conditions. Studies of polymers with continuous size polydispersity, on the
other hand, have been restricted to the semi-grand-canonical case [23, 24]. (An exception
is very recent work [25] on interacting polymers; see section 4.) Here the system is thought
of as connected to a large polymer reservoir which fixes the chemical potential µp(σp) for
each polymer size σp. The polymer density in the system is determined only indirectly,
and has to be deduced a posteriori. Within the AO approach the polymers are treated
as ideal so that the reservoir density distribution and chemical potentials are related by
ρr

p(σp) = eµp(σp). The decomposition of the chemical potential into ideal and excess parts,
µp(σp) = ln ρp(σp) + µex

p (σp), then shows that the polymer density distribution in any of the
phases within the system itself can be written as

ρp(σp) = ρr
p(σp)e−µex

p (σp). (4)

Here the µex
p (σp) are the excess polymer chemical potentials of the phase being considered.

Figure 1 shows a sketch of the results obtained in [24] for such a semi-grand-canonical
scenario, with polymer reservoir density distributions of Schulz form (see section 3 below).
The graphs compare the behaviour for weak (z → ∞, i.e. δ = 0, dashed lines) and strong
(z = 5, solid lines) polydispersity. The means of the Schulz distributions were chosen so that
the virial average polymer size ξB = 0.4 of the normalized reservoir size distribution was the
same in both cases. On the left, the polymer reservoir density ρr

p is sketched against the colloid
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Figure 1. Phase diagram sketch of the phase behaviour for a semi-grand-canonical colloid–polymer
mixture, following [24]; F: fluid, G: gas, L: liquid, S: solid. The two graphs show the colloid volume
fraction on the horizontal axis and on the vertical axis the polymer reservoir density ρr

p (left) and
the polymer density ρp in the system itself (right). The dashed and solid curves correspond to
weak (z → ∞, δ = 0) and strong (z = 5) polymer polydispersity, respectively; the virial average
polymer size is ξB = 0.4 in both cases. The triple points are marked by horizontal dotted lines on
the left; they are mapped to three-phase GLS triangles on the right.

volume fraction. Using (4), these results can then be mapped onto a representation in terms
of the actual polymer density ρp in the system, as shown on the right. This corresponds to
fixing the total number of polymers in the system while the polymer size distribution continues
to vary across the phase diagram, being controlled by the chemical potentials—or rather the
chemical potential differences—imposed via the reservoir.

In both representations figure 1 shows that, as a general rule, increasing the polymer
polydispersity δ increases the size of the gas–liquid region in the phase diagram. As seen
most clearly in the plot on the right, however, there are also regions in the phase diagram (at
low ρp) where gas–liquid coexistence is suppressed with increasing δ, and fluid–solid phase
separation is favoured. This seems counter-intuitive: size polydispersity in the colloids, for
example, is known to have the opposite effect, delaying fluid–solid relative to gas–liquid phase
separation [21, 26, 27]. One of our aims will be to clarify this issue, and in particular the effect
of the varying polymer size distribution in the semi-grand-canonical setting.

The effects of polymer size polydispersity have also been analysed in terms of the
(pairwise part of the) depletion interaction between colloids [28–31]. Conceptually, the
fixed polymer size distribution in these studies means again that constant imposed polymer
chemical potentials are being considered; see e.g. [15, 32]. Finally, we mention the related
work of [33]. This also used a semi-grand-canonical framework, but starting from a different
physical motivation: polymers were regarded as monodisperse with regard to chain length,
and size polydispersity in the equivalent polymer spheres was considered as arising from
compression of the polymers. In this case the semi-grand-canonical approach is the physically
relevant one since polymer spheres of different sizes can be transformed into each other. (A
similar scenario arises when the polymers are replaced by wormlike micelles [34].) The effects
of polymer compressibility on fluid–solid phase boundaries were found to be rather small up to
size ratios ξ ≈ 0.5 [33]. We therefore ignore them here and focus on size polydispersity arising
from a distribution of polymer chain lengths. The experimental situation is then normally the
canonical one, where the overall distribution of polymer sizes in the system is fixed.

Below we describe briefly the free energy which we use to model our colloid–polymer
mixture, and the numerical method by which phase diagrams are obtained (section 2). Our
results for the effects of polydispersity on the phase behaviour are given in section 3, separately
for the experimentally relevant case of fixed polymer size distribution and for the semi-grand-
canonical scenario where we compare with previous studies [24]. Conclusions and an outlook
towards future work can be found in the final section.
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2. Free energy and numerical method

In a recent paper [21] we derived a free-energy expression for an AO system where both
polymers and colloids are polydisperse, by extending the free-volume approximation of
Lekkerkerker et al [15]. This free energy can be written in the following form:

f = f id
c + f id

p + f ex
hs +

∫
dσp ρp(σp)µ

ex
hs(σp). (5)

The first two contributions are the ideal free energies of a mixture of polydisperse colloids
and polymers, respectively. The next term, f ex

hs , is the excess free energy of a system of pure
(polydisperse) hard-sphere colloids. In the last term, which represents the colloid–polymer
interaction, µex

hs(σp) is the excess chemical potential of a hard-sphere particle of diameter σp

in the pure colloid system.
Evaluation of the free energy (5) requires as input only the properties of the pure colloid

system, i.e. its excess free energy f ex
hs . We therefore need to assign appropriate expressions

for f ex
hs in the colloidal fluid (or gas/liquid) and solid phases. For the fluid part of the

excess free energy the most accurate approximation available is the BMCSL equation of
state [35, 36] while for the solid we adopt Bartlett’s fit to simulation data for bidisperse
hard-sphere mixtures [37, 38]. Our previous work [26, 27] on polydisperse hard spheres has
shown that with these free energy expressions quantitatively accurate fits to simulation data
are obtained. Both free energy expressions depend only on the moments ρci = ∫

dσc ρc(σc)σ
i
c

(i = 0, . . . , 3) of the colloid density distribution. As a consequence the excess chemical
potentials become third-order polynomials,

µex
hs(σ ) = δ f ex

hs

δρc(σ )
=

∑
i

µex
hs,iσ

i (6)

where the µex
hs,i are the excess moment chemical potentials of the pure hard-sphere system,

µex
hs,i = ∂ f ex

hs /∂ρc i . (As explained in [21], we always evaluate these from the BMCSL free
energy.) The interaction term in (5) then simplifies to∫

dσp ρp(σp)µ
ex
hs(σp) =

∑
i

µex
hs,iρpi (7)

where the ρpi = ∫
dσp ρp(σp)σ

i
p (i = 0, . . . , 3) are the moments of the polymer density

distribution.
We will deal with the particular case where the colloids are assumed to be monodisperse.

With the colloid diameter set to unity as assumed, all colloid density moments then become
identical, ρci = ρc. Writing out the ideal contributions explicitly, the free energy (5) thus takes
the form

f = ρc(ln ρc − 1) +
∫

dσp ρp(σp)[ln ρp(σp) − 1] + f ex
hs (ρc) +

∑
i

µex
hs,i (ρc)ρpi . (8)

Here we have highlighted that f ex
hs (and therefore the µex

hs,i ) now only depend on the colloid
density ρc, or equivalently the colloidal volume fraction φc; for monodisperse colloids and
in our units the two quantities are identical. The excess part of the free energy (8) thus only
depends on the colloid density ρc and the moments ρpi of the polymer density distribution. As
in [21] for the converse situation of polydisperse colloids and monodisperse polymers, we can
regard these quantities as moments of an enlarged density distribution (ρc, ρp(σp)). Because
only a finite number (five) of such moments are involved, we thus have a truncatable free
energy [39]. The phase equilibrium conditions associated with this free energy can then be
solved using the moment-free-energy (MFE) method [21, 39–42]. The moment free energy
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allows one to map the full free energy (8), with its dependence on all details of ρp(σp) through
the ideal part, onto an MFE depending only on the moments ρpi and ρc. From the latter, phase
behaviour can then be found by the conventional methods for finite mixtures, treating each
of the ρp i as a number density of an appropriate ‘quasi-species’ [39]. For truncatable free
energies this locates exactly the cloud points, i.e. the onset of phase separation coming from a
single phase, as well as the properties of the coexisting ‘shadow’ phases that appear. Inside the
coexistence region, one in principle needs to solve a set of highly coupled nonlinear equations,
and the predictions derived from the MFE are only approximate. However, by retaining extra
moments, increasingly accurate solutions can be obtained by iteration [39, 43–45]. Using
these as initial points, we are then able to find the, for our free energy, exact solutions of the
phase equilibrium equations.

The MFE method is designed for the physically realistic scenario where the overall polymer
density distribution is conserved when the system separates into two or more phases. However,
it can also be exploited to analyse semi-grand-canonical settings. This is done by relaxing the
particle conservation constraints on some moments; in our specific case, only ρc and ρp0

are kept conserved while the other moments of the polymer density distribution are adapted
to minimize the free energy. One can show that this reproduces the semi-grand-canonical
analysis of Sear and Frenkel [24], in full analogy to our discussion in [27].

3. Phase behaviour

In this section we will describe our results for the overall phase behaviour of a mixture of
polydisperse polymers and monodisperse hard-sphere colloids. Our numerical work requires
a choice to be made for the ‘parent’ polymer diameter distribution n(0)

p (σp) which is imposed
when the system is prepared. We concentrate primarily on a Schulz distribution

n(0)
p (σp) ∝ σ z

p exp

[
−

(
z + 1

σ̄

)
σp

]
.

An upper cut-off of σp = 1 on polymer sizes is imposed because for larger sizes the chain
structure of the polymers becomes important and polymers can no longer be treated as effective
spheres; see e.g. [46, 47]. The parameters σ̄ and z control the mean and width of the Schulz
distribution. Without a cut-off, the mean size is simply ξS = σ̄ while the polydispersity is
related to z via δ2 = 1/(z + 1). In the presence of the cut-off these relations remain valid for
large z, where the system is almost monodisperse; otherwise z and σ̄ have to be calculated
numerically to give the desired values of ξS and δ. We will focus in our numerical work on
three values of the polydispersity, namely δ = 1/

√
20 + 1 ≈ 0.22, δ = 1/

√
5 + 1 ≈ 0.41 and

δ = 1/
√

2 + 1 ≈ 0.58.
To check the generality of our results, calculations have also been performed for a triangular

size distribution:

n(0)
p (σp) = 1

w2

{
σp − (σ̄ − w) for σ̄ − w � σp � σ̄

(σ̄ + w) − σp for σ̄ � σp � σ̄ + w
.

Here the mean size is ξS ≡ σ̄ independently of the width parameter w, which is related to
the polydispersity by w = √

6σ̄ δ. We find that qualitative features do not depend strongly on
the shape of the polymer size distribution and so mostly report only the results for a Schulz
distribution.

3.1. Phase diagrams

As discussed in the introduction, the phase diagrams of monodisperse colloid–polymer
mixtures may show either only fluid–solid coexistence or, for sufficiently large polymers,
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Figure 2. Phase diagram topologies as a function of mean polymer size ξS and polydispersity δ.
Full circles indicate parameter values where only fluid–solid coexistence is found, while empty
circles show that the phase diagram has a gas–liquid coexistence region. The thick solid curve
shows a rough estimate for the boundary between the two regions, which defines the crossover
value of the mean polymer size, ξc(δ). Two sample sets of curves corresponding to constant ξS,
ξN, ξM and ξB (chosen to agree at δ = 0.41) are also drawn. Comparison with the thick solid curve
shows that ξM is most suitable for predicting the phase diagram topology independently of δ.

an additional gas–liquid region with an associated gas–liquid–solid triangle. We begin by
investigating the effect of polymer polydispersity on the change in phase diagram topology
as polymer size is increased, by calculating phase diagrams for a range of values of mean
polymer size ξS and polymer polydispersity δ. Figure 2 summarizes the results, for Schulz size
distributions. The empty circles indicate phase diagrams containing gas–liquid coexistence
regions, while the full circles identify phase diagrams where only a fluid to fluid–solid transition
was found. From these results we can estimate the threshold value ξc for the mean polymer
diameter as a function of polydispersity δ, as indicated by the thick solid curve in figure 2.
The data show that as polydispersity increases, ξc diminishes significantly. This is due to the
fact that, for given ξS, polydispersity tends to favour gas–liquid over fluid–solid coexistence.
At ξS = 0.2, for example, the phase diagram topology changes at δ ≈ 0.35, from fluid–solid
coexistence only at low δ to additional gas–liquid and gas–liquid–solid coexistence at high δ.

In figure 3 we show the full phase diagram obtained for Schulz distributions of
polydispersity δ = 0.41 and 0.58 and at constant mean polymer size of ξS = 0.2 (top)
and ξS = 0.4 (bottom). The axis variables are the colloid volume fraction φc—identical in our
units to ρc—and the (effective) polymer volume fraction φp = ρp3, following the suggestion by
Warren [22] that the representation in terms of φp minimizes polydispersity effects on the phase
behaviour. At ξS = 0.2 we see explicitly how gas–liquid and three-phase regions appear as δ is
increased, while the fluid–solid boundary recedes. At ξ = 0.4, figure 3 (bottom), a gas–liquid
region is present for all polydispersities. The main effect of increasing polydispersity is again
to favour gas–liquid coexistence. We note that, in contrast to what is found in a monodisperse
system, the phase boundaries of the gas–liquid–solid region are no longer straight. This is due
to the fact that in a polydisperse system the constraint of particle conservation must be satisfied
for infinitely many different polymer sizes; indeed, the polymer size distributions of the three
coexisting phases change as one moves around the three-phase region.

We next ask which measure of effective polymer size is most appropriate for predicting
the phase diagram topology. Ideally, as explained in the introduction, the value of this quantity
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Figure 3. Phase diagrams for Schulz distributions with polydispersity δ = 0.41 and 0.58 and fixed
mean polymer size ξS = 0.2 (top) and ξS = 0.4 (bottom), plotted in terms of effective polymer
volume fraction φp versus colloid volume fraction φc. Dotted curve: best guess for the phase
boundary where our numerical data become unreliable. The inset shows an enlarged view of the
three-phase region for δ = 0.41 and ξS = 0.2.

should be enough to predict the occurrence or not of gas–liquid coexistence, whatever the
polydispersity. In terms of figure 2, this means that the curve ξc(δ) should follow a contour
of constant effective polymer size. We have therefore plotted such contours for each of the
four possible measures of effective size discussed in the introduction (ξS, mean diameter; ξN,
number average; ξM, mass average; ξB, virial average). Two sets of contours are shown, chosen
such that all four quantities have identical values (0.2 and 0.4, respectively) at polydispersity
δ = 1/

√
5 + 1 ≈ 0.41. This value of δ was also used as a reference point in [24]. We

see that among the four candidate definitions of an effective polymer size, the mass average
gives a contour which follows most closely—although certainly not perfectly—the curve ξc(δ)

which marks the crossover between the two phase diagram topologies. It is therefore our best
candidate for a useful measure of effective polymer size.

We can now go further and investigate whether polymer size distributions with the same
mass-average ξM have not only the same phase diagram topology but in fact quantitatively
similar phase diagrams. As pointed out in the introduction, the answer to this question also
depends on how we represent the concentration of polymers; we continue to use φp. With
this choice, the collapse of phase diagrams for polymer size distributions with the same ξM
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Figure 4. Top: phase diagrams for Schulz distributions with polydispersity δ = 0.22, 0.41 and
0.58 and constant mass average ξM = 0.558; this should be contrasted with figure 3, where the
mean size ξS (=0.4) was held fixed. Bottom: phase diagrams for a triangular size distribution with
δ = 0.2 and 0.4 at constant mass average ξM = 0.528. In the inset the results for fixed mean
diameter of ξS = 0.4 are shown for comparison. Dotted curves indicate best guesses for phase
boundaries we could not determine accurately from our numerics.

is in fact rather good, as shown in figure 4 (top). The phase diagrams displayed correspond
to the parameter values at points (a)–(c) in figure 2. In figure 4 (bottom) we show analogous
results for triangular size distributions. Again the comparison at constant mass-average ξM

gives a good collapse of the phase diagrams for different polydispersities, while at fixed ξS

polydispersity causes significant changes; see the inset of figure 4 (bottom). In summary,
we can say that systems with the same mass-average ξM give phase diagrams which are not
only qualitatively but in fact quantitatively largely independent of polydispersity. Our results
suggest that this conclusion holds independently of the polymer size distribution—though
multimodal distributions might be expected to behave differently—and up to fairly substantial
polydispersities of at least 40% and possibly higher.

We note finally that the results in figure 4 are for the case of relatively large polymers,where
phase separation is initially into gas and liquid except at very low polymer concentrations. We
have checked the near δ-independence of phase diagrams with the same ξM also for smaller
polymers, where fluid–solid phase separation occurs first (data not shown), and reached the
same conclusion. Very close to the crossover in the phase diagram topology, deviations do of
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course appear. This is clear from figure 2, which shows that the contour of constant ξM does
not follow the crossover curve perfectly. In a narrow range of fixed values of ξM the phase
diagram will therefore change with δ, both in terms of its topology and the quantitative location
of the phase boundaries.

3.2. Comparison with semi-grand-canonical approach

The qualitative trend of the results presented so far is that, for fixed mean polymer size ξS,
polymer polydispersity favours gas–liquid coexistence over fluid–solid phase splits. On the
other hand, the results obtained by Sear and Frenkel in the semi-grand-canonical approach [24],
as sketched in figure 1, suggested that fluid–solid phase separation can be favoured by
polydispersity in some regions of the phase diagram. This difference clearly needs to be
understood.

Three possible causes suggest themselves. First, the results of Sear and Frenkel were
obtained by comparing reservoir polymer size distributions with constant virial average size
ξB, whereas we initially focused on constant ξS. Second, their phase diagrams are represented
in terms of polymer density ρp rather than effective polymer volume fraction φp. Third, their
polymer size distribution in the system varies because it is imposed only indirectly via the
reservoir size distribution, whereas it is fixed in our analysis.

It is intuitively clear from the discussion above that keeping ξB rather than ξS constant
should not influence the results greatly. Indeed, if we look at figure 2 we see that contours
of constant ξB are close to those for constant ξS, which are vertical lines. To rule out more
quantitatively the first two possible reasons discussed above, we have calculated the cloud
curves for the onset of gas–liquid coexistence for three Schulz size distributions with identical
ξB, and plotted them in figure 5 (top) with ρp on the vertical axis. As before, gas–liquid
coexistence is favoured by increased polymer polydispersity. This leaves only the third
reason, i.e. the difference between the canonical and semi-grand-canonical scenarios. Figure 5
(bottom) compares our results for the semi-grand-canonical scenario with the canonical ones
in the top graph. The same three polymer size distributions are used as before, but they now
specify the properties of the reservoir: the normalized reservoir size distribution, nr

p(σp), is

the same as the parent size distribution n(0)
p (σp) used in the canonical case. As expected, our

semi-grand-canonical results are in good agreement1 with those of [24]. In particular, we see
in figure 5 (bottom) that the change to the semi-grand-canonical description has reversed the
order of the cloud curves at low polymer density as compared to the canonical scenario shown
in figure 5 (top).

We can thus conclude that the opposite trends with polydispersity seen in the present
study and in [24] arise from the choice of a semi-grand-canonical scenario in the latter. To
understand explicitly how the polymer size distribution is affected by this, we can combine (4)
and (6) to write

ρp(σp) = ρr
p(σp) exp

(
−

3∑
i=0

µex
hs,iσ

i
p

)
(9)

where ρr
p(σp) is the polymer density distribution in the reservoir as before. The excess

chemical potentials µex
hs,i that appear here vary as we change the colloid density of our system.

Correspondingly the polymer density distribution has its shape modified as we move around the
phase diagram. In particular, at the onset of phase coexistence the normalized size distribution

1 It appears that figure 4 in [24] may have been incorrectly scaled: on the horizontal axis, which represents a pure
hard-sphere colloid system without polymer, the onset of fluid–solid coexistence is shown at φc ≈ 0.525 rather than
the correct value φc = 0.494 which our calculation and the other figures in [24] reproduce.
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Figure 5. Cloud curves showing the onset of phase coexistence coming from low colloid density.
Top: canonical scenario; results are shown for three parent size distributions n(0)

p (σp) with different
polydispersities, all with the same virial average polymer size ξB as the reference distribution with
ξS = 0.4 and δ = 0.41. Bottom: results for the corresponding semi-grand-canonical scenario,
where the same three distributions are used as the reservoir size distribution, nr

p(σp).

np(σp) will differ from the one in the reservoir, nr
p(σp). In the more realistic canonical

description, on the other hand, np(σp) = n(0)
p (σp) remains fixed up to the point where phase

coexistence begins.
To illustrate this difference, we plot in figure 6 (top) the normalized size distributions

np(σp) in the semi-grand-canonical system (solid curves). These are compared to the reservoir
size distributions nr

p(σp) (dashed curves), which are the same as used in figure 5 (bottom);
the colloid and polymer densities are (φc, ρp) = (0.3, 1.0). We notice that the system and
reservoir size distributions differ significantly: the Gibbs–Boltzmann factor in (9) shifts the
mean polymer size to lower values, and this effect becomes stronger as the polydispersity
increases. Figure 6 (bottom) traces the mean and polydispersity of the system size distribution
as a function of colloid volume fraction φc, at fixed ρp = 1.0. The reduction in the mean size
compared to the reservoir is seen to increase with colloid density. The polydispersity, on the
other hand, is only weakly affected, as the inset of figure 6 (bottom) shows.

The lines in figure 6 (bottom) are drawn up to the cloud point where phase separation
begins. For the widest reservoir distribution (δ = 0.58), the mean polymer size in the system
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Figure 6. Top: comparison of polymer size distributions in a semi-grand-canonical system, np(σp)

(solid lines), with the corresponding reservoir size distributions nr
p(σp) (dashed). The same three

reservoir distributions as in figure 5 (bottom) are used; the colloid and polymer densities are fixed
to (φc, ρp) = (0.3, 1.0). Bottom: mean polymer size ξS (main graph) and polydispersity δ (inset)
of the system size distribution np(σp), at fixed polymer density ρp = 1.0 and for varying colloid
density φc. Arrows on the vertical axis in the main plot indicate the mean sizes in the reservoir.

at this point is roughly half that in the reservoir. Because smaller polymers produce a depletion
interaction that is both weaker and more short ranged, this reduction in polymer size delays
the onset of phase separation. Overall, we conclude that the inversion in the order of the
cloud curves in the bottom part of figure 5 (bottom) results from the shift of the polymer size
distribution to lower values as the polydispersity of the reservoir is increased.

The reduction of the polymer mean size in the semi-grand-canonical scenario can be
understood quantitatively for narrow reservoir distributions. Looking at (9), if ρr

p(σp) is
narrowly peaked around σp = ξ r

S, then we can expand the exponential as const×[1−λ(σp−ξ r
S)]

to leading order. From this one easily sees that the mean size ξS in the system is

ξS = ξ r
S − λ〈(σp − ξ r

S)
2〉r = ξ r

S − λδ2(ξ r
S)

2 (10)

to lowest order in δ. The coefficient λ must be positive because the excess chemical potential in
a hard-sphere system, µex

hs(σp), is an increasing function of σp. As expected we have, therefore,
a reduction in the mean polymer size compared to the reservoir, by an amount which grows
with the reservoir polydispersity as δ2.
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Finally, we note that the three curves in figure 5 (bottom) all appear to cross at the same
point. To see how this effect arises, we focus again on narrow reservoir distributions. The
location of the cloud point value of the polymer density ρp = ρp(φc, ξS, δ) depends on the
colloid volume fraction φc, the mean polymer size ξS in the system and the polydispersity δ;
for small δ, other properties of the size distribution are irrelevant. In a semi-grand-canonical
setting, ξS and δ are determined indirectly by the colloid volume fraction φc as well as the
mean polymer size ξ r

S and the polydispersity of the reservoir. In a perturbation expansion to
order δ2 we can approximate δ2 by its fixed value in the reservoir, and write ξS = ξ r

S −λδ2(ξ r
S)

2

from (10). The explicit dependence on δ of the cloud point is also expected to be quadratic to
leading order [48, 49]. Overall, we can therefore expand the cloud point position in a weakly
polydisperse semi-grand-canonical system as

ρp(φc, ξS, δ) = ρp(φc, ξ
r
S, 0) − λδ2(ξ r

S)
2 ∂ρp

∂ξS
(φc, ξ

r
S, 0) + δ2 ∂ρp

∂δ2
(φc, ξ

r
S, 0). (11)

How this varies with increasing polydispersity δ2 depends on the competition of the last two
terms. The last term is also present in the canonical scenario and represents the shift in the
cloud point at constant mean polymer size. We saw above that polydispersity favours phase
coexistence under these conditions, so that ∂ρp/∂δ2 must be negative; see also figure 5 (top).
The second term is only present for the semi-grand-canonical case; because increasing ξS

again favours phase separation, we have that also ∂ρp/∂ξS is negative. Thus the two δ2-terms
in (11) have opposite signs. The coefficient λ depends on φc; it tends to zero for φc → 0,
where the excess chemical potentials in a hard-sphere system vanish, and grows from there
with increasing φc. At small φc we therefore expect the third term in (11) to dominate, so that
polydispersity favours phase separation as in the canonical case. As φc increases, the second
term eventually balances the third. At this point the cloud curve is unaffected by δ2 to leading
order, and this produces the crossing phenomenon in figure 5 (bottom). At even higher φc, the
second term dominates and so phase separation is delayed with increasing δ, exactly as seen
in the lower part of figure 5 (bottom).

Overall, while in the realistic canonical description polydispersity always favours gas–
liquid phase separation, in the semi-grand-canonical scenario this trend can be counteracted
by a decrease in the mean polymer size in the system. This effect can become dominant at
high colloid volume fractions, producing the reversal in the order of the curves in the lower
parts of figure 5 (top) and (bottom).

4. Conclusion and outlook

We have investigated the effect of polymer polydispersity on a mixture of ideal polymers and
hard-sphere colloids. Our focus was on the realistic (canonical) case where the distribution
of polymer sizes is fixed when the system is prepared, but we have also compared with semi-
grand-canonical approaches where the size distribution adapts by equilibrating to chemical
potentials imposed by a large polymer reservoir [24]. For the canonical setting, gas–liquid
phase separation is favoured by increased polydispersity while fluid–solid phase separation is
retarded. This is in broad agreement with the intuition that polydispersity disfavours ordered
phases [21, 27], though less obvious here since the size polydispersity is in the polymers, not
in the colloids that order translationally in the solid.

In a semi-grand-canonical scenario the above trends with polydispersity are reversed in
some parts of the phase diagram [24]. We saw that this arises because the polymer size
distribution in the system can become rather different from the reservoir size distribution,
especially for dense colloidal phases. Specifically, the size distribution is shifted to smaller
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polymer sizes, the more so the larger the degree of polydispersity. This effect is sufficiently
strong to reverse the order of the cloud curves compared to the canonical setting, favouring
fluid–solid over gas–liquid formation.

For the canonical case of conserved polymer size distribution, we established that the
phase diagram topology was nearly independent of polydispersity provided one compares
systems with the same mass average polymer size ξM. We were led to this observation by
estimating the location of the curve ξc(δ) in the (ξS, δ) plane along which the phase diagram
topology changes, and comparing this with contours of constant ξM. The crossover value ξc

decreases with increasing polydispersity δ, showing quantitatively that gas–liquid coexistence
is favoured as polydispersity is increased at constant mean polymer size. Finally, we showed
that even quantitatively the phase diagrams of systems with the same mass average ξM are
nearly independent of polydispersity, provided that polymer concentration is represented in
terms of the effective polymer volume fraction φp.

To assess the reliability of our results, we discuss briefly the approximations made. We
have employed the standard AO model instead of explicitly modelling ideal polymer chains.
Simulations [11] suggest that this is a reasonable approximation for polymers which are not
too large, i.e. σp < 1. A slight improvement can be obtained by using a mapping from
polymer radius of gyration to effective sphere radius σp/2 which accounts for the effect of
the curvature of the colloid surface on the polymer conformations [11, 50]. In the limit of a
small polymer, this results in an increase of σp by a factor 2/

√
π ≈ 1.13 over the naive value,

but in the range 0.2 < σp < 1 of interest the corrections to σp are small (<5%). With such
corrections included, a Schulz distribution across the polymers’ radii of gyration—the case
we concentrated on—would result in a distribution of σp that is no longer precisely of Schulz
form; quantitatively, however, this will again be a small effect. We have also used the free-
volume approximation to estimate the free energy of the polydisperse AO model. As discussed
elsewhere [21], this is essentially equivalent to the density functional theory approach of [33];
see also the discussion for the monodisperse case in [17]. Again, simulations suggest that
this approach is reliable [11, 20] in the range 0.3 < σp < 1, although somewhat less so after
polymer reservoir densities ρr

p are converted back to those in the system (compare e.g. figure 3
in [20] with figure 2(b) in [17]).

We comment briefly on comparisons with experimental work. Much work on mixtures
of colloids and θ -point polymers has been done in Edinburgh; see e.g. the review [34].
Experimentally, the typical polymer size is normally determined from the weight-average
molecular weight, which corresponds to our ξ2

M. Interestingly, our results then suggest that
polymer polydispersity should have only a small effect on the phase behaviour, so that e.g. the
comparison between experimental data and AO model predictions in [51] would remain
essentially unchanged2. A systematic experimental study of such polydispersity effects would
seem worthwhile. For example, one could prepare two polydisperse systems, one whose
number-averaged molecular weight (∼ξ2

N) and one whose mass-averaged molecular weight
(∼ξ2

M) coincides with that of a near-monodisperse reference system; our theory would then
predict that the second polydisperse system produces phase behaviour much more similar to the
monodisperse reference than the first. Also fruitful could be the investigation of polymer size

2 However, care is needed when comparing measures of polymer concentrations. Whereas we have used the
effective polymer volume fraction φp, experimentally the polymer mass density is more readily accessible; in
our units, the latter is proportional to ρpξ

2
N. At constant ξM, one finds e.g. for a Schulz distribution that the ratio

φp/(ρpξ
2
N) = 〈σ 3

p 〉/〈σ 2
p 〉 decreases with increasing polymer polydispersity δ. Since we found phase diagrams that

were relatively insensitive to δ when expressed in terms of φp, the corresponding values of polymer mass density
should increase with δ. Quantitatively the effect is moderate, however, leading to an increase of only ≈10% over the
monodisperse case even for δ = 0.6.
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fractionation between coexisting phases. We have not displayed our theoretical predictions
for this; one finds as in the semi-grand-canonical approach [24] that the larger polymers are
found in the phases with lower colloid density, but the detailed distribution shapes are different
because they always need to combine to give the fixed parent distribution.

An interesting extension of the present work would be to consider the combined effect of
polymer and colloid size polydispersity, generalizing the present study and our previous one
on polydisperse colloids and monodisperse polymers [21]. This is in principle possible using
the current framework, but the excess free energy would then depend on eight moments ρci and
ρp i (i = 0, . . . , 3), making the problem very challenging numerically. Physically, one would
expect from our current results that the crossover value of the polymer size, when measured
in terms of the mass average ξM, would be largely unaffected by polymer polydispersity, but
decrease significantly with increasing colloid polydispersity [21]. A simpler alternative to the
treatment of a fully polydisperse system would be to consider the colloid size distribution as
‘quenched’, i.e. equal to the parent in all phases, thus excluding colloid size fractionation.
One would then need only one conserved colloid moment in the excess free energy, and the
complexity of the numerical analysis would be the same as in the present study. Physically,
this quenched approximation could be appropriate for describing the initial stages of phase
separation in a polydisperse colloid–polymer mixture, where polymer size fractionation—
which should be the faster process—has already taken place while colloid size fractionation
is still negligible.

A key open question for further work is how our results generalize to the case of good or
poor (rather than θ -) solvents, where polymer–polymer interactions can no longer be neglected.
For monodisperse polymers this issue has been tackled by a variety of methods including virial
expansions near the θ -point [52], integral equations [53–56], Flory–Huggins theory [57],
coarse-graining of polymers into soft colloids [20, 50, 58], modifications of free-volume
theory [59], and an AO model with added soft polymer–polymer repulsions [60] to model good
solvents or with a repulsive co-solvent to mimic poor ones [61]. It remains an open challenge to
incorporate polymer polydispersity into these approaches. Some progress in this direction has
already been made in [25], which was published after the present work was completed. In this
study the polymers were modelled as chains of hard-sphere particles, as would be appropriate
for good solvent conditions, and calculations for the onset of gas–liquid coexistence were
performed using a truncatable model free energy derived from thermodynamic perturbation
theory [62]. Also in this scenario with interacting polymers, it is found that polydispersity
significantly enlarges the size of the coexistence region. It appears therefore that this qualitative
conclusion is robust to the presence or otherwise of polymer non-ideality. If the approach
of [25] can be extended to include colloidal solids, it would be interesting to ask whether
polydispersity effects on the relative stability of fluid–solid and gas–liquid phase separation
are likewise robust under the inclusion of polymer–polymer interactions.

Acknowledgments

The authors acknowledge support of the EPSRC through grant number GR/R52121/01.

References

[1] Vincent B 1974 Adv. Colloid Interface Sci. 4 193
[2] Napper D 1983 Polymeric Stabilization of Colloidal Dispersions (New York: Academic)
[3] Russel W B, Saville D A and Schowalter W R 1989 Colloidal Dispersions (Cambridge: Cambridge University

Press)
[4] Enikolopyan N S, Fridman M L, Stalnova I O and Popov V L 1990 Adv. Polym. Sci. 96 1
[5] Lewis J A 2000 J. Am. Ceram. Soc. 83 2341



812 M Fasolo and P Sollich

[6] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
[7] Asakura S and Oosawa F 1958 J. Polym. Sci. 33 183
[8] Vrij A 1976 Pure Appl. Chem. 48 471
[9] Joanny J F, Leibler L and de Gennes P G 1979 J. Polym. Sci. B 17 1073

[10] Meijer E J and Frenkel D 1991 Phys. Rev. Lett. 67 1110
[11] Meijer E J and Frenkel D 1994 J. Chem. Phys. 100 6873
[12] Gast A P, Hall C K and Russel W B 1983 J. Colloid Interface Sci. 96 251
[13] Vincent B 1987 Colloids Surf. 24 269
[14] Vincent B, Edwards J, Emmett S and Croot R 1988 Colloids Surf. 31 267
[15] Lekkerkerker H N W et al 1992 Europhys. Lett. 20 559
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